Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Özen Özgen, ${ }^{\text {a }}$. Meltem CeylanÜnlüsoy, ${ }^{\text {b }}$ Oya Bozdağ-Dündar, ${ }^{\text {b }}$ Rahmiye Ertan ${ }^{\text {b }}$ and Engin Kendi ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics Engineering, Hacettepe University, Beytepe 06800, Ankara, Turkey, and
${ }^{\text {b }}$ Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ankara University, Tandoğan, Ankara, Turkey

Correspondence e-mail:
ozgen_ozen@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.048$
$w R$ factor $=0.125$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

3-(4-Chlorobenzyl)-5-(4-oxo-4H-chromen-3-yl-methylene)-1,3-thiazolidine-2,4-dione

In the title molecule, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClNO}_{4} \mathrm{~S}$, the benzopyran ring system and the thiazolidine ring are planar. The dihedral angle between the chlorobenzyl and thiazolidine rings is $74.42(8)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Type 2 diabetes is a chronic and metabolic disease characterized by hyperglycemia and insulin resistance. In recent years, more effective orally active agents were discovered which effectively reduce insulin resistance. These agents have a common thiazolidine-2,4-dione substructure. 2,4-Thiazolidinediones provide many benefits to patients with type 2 diabetes by improving glycemic control and insulin sensitivity, thereby having the potential to decrease the risk of cardiovascular disease associated with insulin resistance (Fonseca, 2003). The chromone moiety forms the important component of pharmacophores of a number of biologically active molecules of synthetic as well as natural origin and many of them have useful medicinal applications (Singh et al., 2002). The title compound, (I), is a chromonyl 2,4-thiazolidinedione and was synthesized for antidiabetic activity. Initially, the structure of (I) was evaluated by elementary analysis, ${ }^{1} \mathrm{H}$ NMR, mass and IR spectroscopic techniques. The crystal structure analysis of (I) was undertaken to elucidate the molecular conformation.

(I)

The benzopyran moiety is essentially planar (Fig. 1). In most of the flavones, the pyrone ring is distorted (Kendi et al., 1996), but in (I) it is planar. The thiazolidine ring is planar within 0.012 (2) \AA. The dihedral angle between the C15-C20 benzene ring and the thiazolidine ring is $74.42(8)^{\circ}$. The $\mathrm{C} 1=\mathrm{O} 1, \mathrm{C} 3=\mathrm{O} 2$ and $\mathrm{C} 6=\mathrm{O} 4$ bonds have normal doublebond values of 1.207 (3), 1.211 (3) and 1.216 (3) \AA, respectively. The strain caused by the ring fusion results in a slight widening of the angle $\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 7\left[121.4\right.$ (2) ${ }^{\circ}$] and narrowing of the angle $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ [114.9 (2) ${ }^{\circ}$] from the normal value of 120°. These angles are 122.9 (5) and 114.2 (6) ${ }^{\circ}$ in 2^{\prime}-methyl- 3^{\prime} nitroflavone (Kendi et al., 1996), and 121.2 (2) and 115.6 (2) ${ }^{\circ}$ in morin (Cody \& Luft, 1994). The molecular structure and crystal packing are stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Received 4 January 2005
Accepted 28 February 2005
Online 11 March 2005

Figure 1
An ORTEP-3 (Farrugia, 1997) drawing of (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Table 2). The intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond formed between atoms O 4 and C 10 is also seen in 7-hydoxy$2^{\prime}, 6^{\prime}$-dimethoxyflavone (Wallet et al., 1992) and 2-(2-ethoxy-carbonyl-1,4-benzodioxan-7-yl)-4H-1-benzopyranone (Özbey et al., 1997).

Experimental

The chemical reagents used in the synthesis were purchased from E. Merck (Darmstadt, Germany) and Aldrich (Milwaukee, MI, USA). 3-(4-Dichlorobenzyl)thiazolidine-2,4-dione was synthesized according to the literature (Lo \& Shropshire, 1957). A mixture of chromone-3-carboxaldehyde ($0.3 \mathrm{~g}, 1.72 \mathrm{mmol}$) and 3-(4-dichloro-benzyl)thiazolidine-2,4-dione ($0.415 \mathrm{~g}, 1.72 \mathrm{mmol}$) was refluxed in the presence of acetic acid (1 ml) and sodium acetate $(0.235 \mathrm{~g}$, 1.72 mmol) for 10 h . The crude product was crystallized from dimethylformamide (yield: $0.432 \mathrm{~g}, 63.2 \%$; m.p: 524 K). IR $\left(\nu, \mathrm{cm}^{-1}\right)(\gamma$ pyrone CO): $1638 ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta 4.88(s, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.39\left(d, 2 \mathrm{H}, 2^{\prime}, 6^{\prime}-\mathrm{H}\right), 7.50\left(d, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}-\mathrm{H}\right), 7.65(d d d, 1 \mathrm{H}, 6-\mathrm{H})$, $7.82(s, 1 \mathrm{H},=\mathrm{CH}), 7.83(d, 1 \mathrm{H}, 8-\mathrm{H}), 7.97(d d d, 1 \mathrm{H}, 7-\mathrm{H}), 8.21(d d$, $\left.1 \mathrm{H}, J_{5.6}=7.60 \mathrm{~Hz}, J_{5.7}=1.60 \mathrm{~Hz}, 5-\mathrm{H}\right) .9 .03(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H})$; ESMS $(\mathrm{m} / \mathrm{z})$: $398(M+1), 399(M+2), 400(M+3), 314.5(100 \%), 286$. Calculated for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClNO}_{4} \mathrm{~S}: \mathrm{C} 60.38, \mathrm{H} 3.04, \mathrm{~N} 3.52$, S 8.06%; found: C 60.83 , H 3.15, N 3.61, S 7.89\%.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{ClNO}_{4} \mathrm{~S}$	$Z=2$
$M_{r}=398.82$	$D_{x}=1.554 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	$\mathrm{Cu} K \alpha$ radiation
$a=8.7819$ (8) $\AA_{\text {。 }}$ 。	Cell parameters from 25
$b=10.2641$ (7) \AA	reflections
$c=10.4074$ (12) \AA	$\theta=19.2-42.6^{\circ}$
$\alpha=112.034(8)^{\circ}$	$\mu=3.38 \mathrm{~mm}^{-1}$
$\beta=98.297$ (8) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=94.009(7)^{\circ}$	Prism, colourless
$V=852.58$ (14) \AA^{3}	$0.48 \times 0.30 \times 0.15 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.015$
diffractometer	$\theta_{\text {max }}=74.2^{\circ}$
Non-profiled ω scans	$h=0 \rightarrow 10$
Absorption correction: ψ scan	$k=-12 \rightarrow 12$
(North et al., 1968)	$l=-12 \rightarrow 12$
$T_{\text {min }}=0.388, T_{\text {max }}=0.596$	3 standard reflections
3583 measured reflections	frequency: 120 min
3365 independent reflections	intensity decay: 2\%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0554 P)^{2}\right. \\
& \quad \quad+0.3299 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.62 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXLL97 } \\
& \text { Extinction coefficient: } 0.0049(6)
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 18$	$1.743(2)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.216(3)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.752(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.381(3)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.768(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.383(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.207(3)$	$\mathrm{N} 1-\mathrm{C} 14$	$1.472(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.211(3)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.341(3)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.332(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.450(3)$
$\mathrm{O} 3-\mathrm{C} 8$	$1.380(3)$		
N1-C1-S1	$111.23(17)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$114.9(2)$
N1-C3-C2	$110.65(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10$	$118.1(2)$
$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 4$	$116.9(2)$	$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 6$	$121.3(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$124.8(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 7$	$121.4(2)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 5$	$123.1(2)$	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 13$	$116.3(2)$
S1-C2-C4-C5	$-1.1(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15$	$100.8(3)$
$\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-4.9(4)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$-65.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.93	2.42	2.836 (3)	107
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.57	3.443 (4)	157
C14-H14A \cdots O1	0.97	2.52	2.864 (3)	101
$\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O} 2^{\text {ii }}$	0.97	2.42	3.361 (3)	164
C16-H16 . O 1	0.93	2.89	3.585 (4)	133
C19-H19 . . O $4^{\text {iii }}$	0.93	2.71	3.351 (3)	127
$\mathrm{C} 20-\mathrm{H} 20 \cdots \mathrm{O} 4^{\text {iii }}$	0.93	2.83	3.420 (3)	122

Symmetry codes: (i) $1+x, 1+y, z$; (ii) $-x, 2-y, 1-z$; (iii) $x, y, 1+z$.
H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (aromatic) or $0.97 \AA$ (methylene). The $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Cody, V. \& Luft, R. J. (1994). J. Mol. Struct. 317, 89-97.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fonseca, V. (2003). Am. J. Med. 115, Suppl. 1, 42-48.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kendi, E., Özbey, S., Tunçbilek, M. \& Ertan, R. (1996). Cryst. Res. Technol. 31, 611-615.

organic papers

Lo, C.-P. \& Shropshire, E. (1957). J. Org. Chem. 22, 999-1001.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Özbey, S., Kendi, E., Göker, H. \& Ertan, R. (1997). Acta Cryst. C53, 19811983.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Singh, G., Singh, L. \& Ishar, P. S. (2002). Tetrahedron, 58, 7883-7890.
Wallet, J.-C., Gaydou, E. M., Espinosa, E., Osorno, O., Molins, E. \& Miravitlles, C. (1992). Acta Cryst. C48, 86-88.

[^0]: (C) 2005 International Union of Crystallography

